

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Architectural design - lighting [S1Arch1>PAO]

Course

Field of study Year/Semester

Architecture 2/3

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

first-cycle Polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

0 0

Tutorials Projects/seminars

0 15

Number of credit points

1,00

Coordinators Lecturers

dr inż. Artur Nawrowski artur.nawrowski@put.poznan.pl

Prerequisites

1 Knowledge • the student has an orderly, theoretically founded general knowledge covering key issues in the field of lighting technology; • the student has a basic knowledge of the role and importance of artificial light in architectural and urban design; • the student has basic knowledge necessary to understand the social, economic, legal and non-technical conditions of the implementation of artificial light systems in the zones of human life and functioning. 2 Skills: • the student is able to obtain information from literature, databases and other, properly selected sources in English, can integrate information, interpret it, as well as draw conclusions and formulate and justify opinions; • the student is able to make a critical analysis of the way of functioning and evaluate the existing solutions, systems and processes; • is able to communicate using various techniques in the professional environment and in other environments. 3 Social competences • the student understands the need for lifelong learning, is able to inspire and organize the learning process of other people; • understanding the need to expand their competences, readiness to cooperate within the team.

Course objective

Lighting design: • learning about the formal and legal conditions of architectural illumination; • learning about the stages of preparing the illumination concept and the importance of architectural and urban analysies in the process of creating the concept; • learning the basic tools and techniques for developing a technically correct concept of illumination; • learning about computer-aided design of electric (artificial) lighting; • obtaining skills in the field of creating technical documentation of the illumination project of a selected architectural object; • gaining knowledge and skills in the field of designing illumination systems.

Course-related learning outcomes

Knowledge

Student knows and understands:

A.W1. architectural design for the implementation of simple tasks, in particular: simple facilities taking into account the basic needs of users, single- and multi-family housing, service facilities in residential complexes, public facilities in an open landscape or in an urban environment;

A.W2. urban design in the scope of implementation of simple tasks, in particular: small building complexes, local spatial development plans, taking into account local conditions and connections, as well as forecasting transformation processes in the settlement structure of towns and villages;

A.W4. principles of universal design, including the idea of designing spaces and buildings accessible to all users, in particular for people with disabilities, in architecture, urban planning and spatial planning, and ergonomic principles, including ergonomic parameters necessary to ensure full functionality of the designed space and facilities for all users, especially for people with disabilities

Skills

Student can:

A.U1. design an architectural object by creating and transforming space so as to give it new value - in accordance with a given program that takes into account the requirements and needs of all users;

A.U4. make a critical analysis of the conditions, including the valorization of the land development and building conditions;

A.U5. think and act creatively, using the workshop skills necessary to maintain and expand the ability to implement artistic concepts in architectural and urban design;

A.U6. integrate information obtained from various sources, formulate their interpretation and critical analysis;

A.U7. communicate using various techniques and tools in a professional environment appropriate for architectural and urban design;

A.U8. prepare architectural and construction documentation in appropriate scales in relation to the conceptual architectural design;

Social competences

Student is capable of:

A.S1. independent thinking to solve simple design problems;

A.S2. taking responsibility for shaping the natural environment and cultural landscape, including the preservation of the heritage of the region, country and Europe.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Conditions for passing and the method of project evaluation:

An important criterion for project evaluation will be the approach to the following issues:

- 1. Architectural, urban (communication, water, greenery, observation conditions), historical, location, conservation and lighting analysis as the basis for the initial concept of illumination.
- 2. Initial visual illumination concept of an architectural object.
- 3. Technical conditions proposed in the concept modification of the initial assumptions.
- 4. Lighting calculations modification of the concept and / or method of illumination.
- 5. The color of light and luminance as means of expression in illumination.
- 6. Testing the correctness of selected technical solutions (eg in terms of glare).
- 7. Examination and verification of lighting levels on the facades of the facility in particular phases of the project.

Formative assessment -

partial reviews checking the progress of the student's work - individual consultations, brainstorming, joint discussion; review of the student's work progress 5 times during the semester (except for the first classes -

introduction to the subject of classes and occupational health and safety and the last classes - final classes), of which obtaining 5 positive grades is a condition for passing the course.

Assessment scale: 2.0; 3.0; 3.5; 4.0; 4.5; 5.0

Summative assessment -

final review during the last class - passing the design solutions presented on the forum of the group on the basis of the substantive content of the study according to the scheme and the board in a standardized format provided by the teacher. The project documentation (descriptive and technical documentation), the project file and the board in a standardized format are delivered in digital form on the eKursy platform. Assessment scale: 2.0; 3.0; 3.5; 4.0; 4.5; 5.0

Obtaining a positive grade for the module depends on the student achieving all the learning outcomes listed in the syllabus.

Programme content

LIGHTING DESIGN:

Project: Development of the concept of illumination of a selected architectural object, agreed with the tutor, meeting the formal criteria.

Analytical part:

- location of the building, its cubature, style and architectural detail, observation conditions (directions and distances), historical context, urban analysis (communication, water, greenery) and lighting analysis as the basic analysis necessary to create a design concept for the illumination of an architectural object,
- analysis of the current lighting condition of the facility,
- analysis of lighting equipment pre-selected for illumination,
- analysis of the possibility of installing selected lighting equipment in a given urban space.

Design part:

The design work is individual and includes the preparation of technical documentation for the illumination project of the selected architectural object, based on calculations, simulation and visualization of the object's lighting in the DIALux environment. The following components should be taken into account in the project: descriptive (analyses, selection of the illumination method, characteristics of the illuminated detail) and technical (hardware solutions, arrangement and aiming of lighting equipment).

Course topics

LIGHTING DESIGN:

Project: Development of the concept of illumination of a selected architectural object, agreed with the tutor, meeting the formal criteria.

Analytical part:

- location of the building, its cubature, style and architectural detail, observation conditions (directions and distances), historical context, urban analysis (communication, water, greenery) and lighting analysis as the basic analysis necessary to create a design concept for the illumination of an architectural object,
- analysis of the current lighting condition of the facility,
- analysis of lighting equipment pre-selected for illumination,
- analysis of the possibility of installing selected lighting equipment in a given urban space.

Design part:

The design work is individual and includes the preparation of technical documentation for the illumination project of the selected architectural object, based on calculations, simulation and visualization of the object's lighting in the DIALux environment. The following components should be taken into account in the project: descriptive (analyses, selection of the illumination method, characteristics of the illuminated detail) and technical (hardware solutions, arrangement and aiming of lighting equipment).

Teaching methods

- 1. Design.
- 2. Case study.
- 3. eLearning Moodle, eKursy.
- 4. Working in groups.
- 5. Discussion.
- 6. Computer programs.

Bibliography

Basic:

LIGHTING DESIGN:

- 1. Bak Jerzy, Pabjańczyk Wiesława, Podstawy techniki świetlnej, Nakład Politechniki Łódzkiej, Łódź 1994.
- 2. Hauser Jacek, Elektrotechnika. Podstawy elektrotermii i techniki świetlnej, Wydawnictwo Politechniki Poznańskiej 2006.
- 3. Mielicki Józef, Zarys wiadomości o barwie, Fundacja Rozwoju Polskiej Kolorystyki, Łódź 1997.
- 4. Technika Świetlna '96 Poradnik-Informator, Praca zbiorowa członków Polskiego Komitetu Oświetleniowego Stowarzyszenia Elektryków Polskich, Warszawa 1996.
- 5. Żagan Wojciech, Podstawy techniki świetlnej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005.
- 6. Żagan Wojciech, Iluminacja obiektów, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2003.
- 7. E-skrypt dla przedmiotu "Projektowanie oświetlenia" (w opracowaniu).
- 8. PN-EN 12193:2002 (U) Oświetlenie stosowane w obiektach sportowych.
- 9. PN-EN 1838:2005 Zastosowanie oświetlenia. Oświetlenie awaryjne.
- 10. PN-EN 12665:2003 (U) Światło i oświetlenie. Podstawowe terminy oraz kryteria określania wymagań dotyczących oświetlenia.
- 11. PN-EN 13032-1:2005 (U) Światło i oświetlenie. Pomiar i prezentacja danych fotometrycznych lamp i opraw oświetleniowych. Część 1: Pomiar i format pliku.
- 12. PN-EN 13032-2:2005 (Ú) Światło i oświetlenie. Pomiar i prezentacja danych fotometrycznych lamp i opraw oświetleniowych. Część 2: Prezentacja danych dla miejsc pracy wewnątrz i na zewnątrz budynków.
- 13. PN-CEN/TR 13201-1:2005 (U) Oświetlenie dróg. Część 1: Wybór klas oświetlenia.
- 14. PN-EN 13201-2:2005 (U) Oświetlenie dróg. Część 2: Wymagania oświetleniowe.
- 15. PN-EN 13201-3:2005 (U) Oświetlenie dróg. Część 3: Obliczenia oświetleniowe.
- 16. PN-EN 13201-4:2005 (U) Oświetlenie dróg. Część 4: Metody pomiarów parametrów oświetlenia.
- 17. PN-EN 12464-1:2012 "Light and lighting Lighting of work places Part 1: Indoor work places".
- 18. PN-EN 12464-2:2014 " Light and lighting -- Lighting of work places -- Part 2: Outdoor work places".
- 19. PN-IEC 60364 Instalacje elektryczne w obiektach budowlanych (norma wieloarkuszowa).
- 20. Ustawa Prawo Energetyczne z dnia 10 kwietnia 1997 r. (Dz. U. z 1997 r. Nr 54, poz. 348 z późniejszymi zmianami).
- 21. Zalecenia i wytyczne projektowe w zakresie luminancji i barwy w iluminacji (Design recommendations and guidelines for luminance and color in illumination).

Additional:

LIGHTING DESIGN:

- 1. Majkowski Konstanty, Podstawy teoretycznej techniki oświetleniowej, Państwowe Wydawnictwo Naukowe, Warszawa 1953.
- 2. Nawrowski A., Dominanty świetlne w iluminacji wybranych obiektów architektonicznych, Rozprawa Doktorska, Poznań: Politechnika Poznańska, 2010.
- 3. Oleszyński T., Miernictwo techniki świetlnej, PWN, Warszawa 1957.
- 4. Tomczewski Andrzej, Rozprawa doktorska "Analiza rozkładu strumienia świetlnego we wnętrzach z uwzględnieniem wielokrotnych odbić", Poznań, grudzień 1998.

Breakdown of average student's workload

	Hours	ECTS
Total workload	25	1,00
Classes requiring direct contact with the teacher	15	0,50
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation)	10	0,50